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We study the stability of a thin, Newtonian viscous sheet floating on a bath of denser fluid.
We first derive a general set of equations governing the evolution of a nearly flat sheet,
accounting for geometrical nonlinearities associated with moderate rotations. We extend
two classical models by considering arbitrary external body and surface forces; these two
models follow from different scaling assumptions, and are derived in a unified way. The
equations capture two modes of deformation, namely viscous bending and stretching,
and describe the evolution of thickness, mid-surface and in-plane velocity as functions of
two-dimensional coordinates. These general equations are applied to a floating viscous
sheet, considering gravity, buoyancy and surface tension. We investigate the stability of
the flat configuration when subjected to arbitrary in-plane strain. Two unstable modes
can be found in the presence of compression. The first one combines undulations of the
center-surface and modulations of the thickness, with a wavevector perpendicular to the
direction of maximum applied compression. The second one is a buckling mode; it is
purely undulatory and has a wavevector along the direction of maximum compression.
A non-linear analysis yields the long-time evolution of the undulatory mode.

1. Introduction

When a longitudinal compressive force is applied to a thin, elastic rod, the rod remains
straight below a well-defined critical force. Above this threshold, the rod bends. This
instability known as buckling is also relevant to thin viscous threads and sheets. Buckling,
and more generally, the dynamics viscous sheets have applications in both natural and
industrial processes.

On geological time scales, the earth’s crust can be modelled as a stack of superposed
thin viscous sheets with different densities and viscosities that float on a denser man-
tle (Ramberg 1981). Lateral compression of such an assemblage generates phenomena
like folding and mountain-building that can be understood as viscous buckling instabili-
ties (Biot 1964; Johnson & Fletcher 1994; Perazzo & Gratton 2010). Thin viscous sheet
models have also been used to model the large-scale deformation of continents (England
& McKenzie 1983) and the buckling of oceanic lithosphere during subduction (Guillou-
Frottier et al. 1995; Ribe et al. 2007).

On the time scales of organismal growth, cells and tissues can be considered as viscous
bodies. For instance, the growth of plant cells was investigated using models of inflated
anisotropic viscous shells (Dyson & Jensen 2010). At the supra-cellular level, a growing
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Figure 1. Principle of the float glass process: molten glass floats on top of molten tin. While it
cools down, the glass is stretched by top rollers and end rollers to achieve the desired thickness.
The float part is about 50 m long and 10 m wide.

tissue is compressed by neighbouring tissues with a lower growth rate. As a consequence,
buckling instabilities can also be expected, yielding a mechanism for morphogenesis, as
for organogenesis in plants (Steele 2000) or fingerprints formation (Kücken & Newell
2004), or the brain convolutions (Toro & Burnod 2005). We note however that, except
in this last study, models were built upon purely elastic approaches.

In glass industry, thin sheets are given prescribed shapes and thickness by applying
mechanical forcing while they cool down (Pearson 1985). In the second part of this
paper, we will consider the case study of a floating sheet, which is motivated by both
plate tectonics and glass industry. The glass float process (Pilkington 1969) is used for
a continuous production of thin glass (Figure 1). At one end of a long bath of liquid
tin, molten glass is poured from the furnace and spreads out forming a layer of floating
glass (tin is denser than glass), cooling down as it gets farther from the furnace. In order
to make the layer thinner than the capillary length, a set of rollers are used to stretch
the floating sheet, which comes out solidified at the other end of the bath, after it has
undergone a transverse compression. The corresponding compressive stress may induce
buckling.

Taylor (1968) demonstrated the buckling of viscous threads and sheets in various ex-
perimental geometries. His work was inspired by the Rayleigh-Stokes analogy (Stokes
1845; Rayleigh 1896), according to which the Stokes equations for a viscous fluid are
similar to the equations for the equilibrium of a Hookean (linearly elastic) incompress-
ible solid, with the fluid velocity and viscosity replaced by the solid displacement and
one-third the Young’s modulus, respectively.

The seminal paper of Taylor (1968) inspired a number of subsequent studies. He first
showed that a viscous thread can buckle under longitudinal compression, an instabil-
ity that was investigated theoretically by Buckmaster et al. (1975) and Buckmaster &
Nachman (1978). Taylor also repeated Barnes & Woodcock (1958)’s experiment on the
coiling of a viscous jet impinging on a wall. In this geometry, buckling is triggered by the
reaction force of the wall (see e.g. Cruickshank & Munson 1982; Mahadevan et al. 1998).
These and other phenomena have been further investigated, and we refer the reader
to Marheineke & Wegener (2009) for a review on viscous threads and jets.

Taylor (1968) also demonstrated buckling in a sheared annular layer of viscous liquid
floating on an inviscid bath, and proposed a qualitative interpretation: shear stress in-
duces compression at 45 degrees from the annulus midline. This experiment was repeated
by Suleiman & Munson (1981) who investigated quantitatively the critical shear rate for
buckling, and the wavelength of the undulations. They identified the relevant dimension-
less groups but failed to predict the critical mode and its threshold. This problem was
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again considered by Benjamin & Mullin (1988) who obtained a quantitative agreement
with the experiments, based on a stability analysis of the 3D viscous flow. This insta-
bility is controlled by external forces (gravity and surface tension), and is essentially a
buckling instability. An analysis based on the equations for thin viscous sheets was still
lacking; one is proposed here as an application of our generic equations. A variant of the
annular buckling experiment was proposed by Blake & Bejan (1984) who considered a
rectangular floating sheet in contact with a container along three edges, and compressed
along the fourth edge which is moving inwards.

The buckling of thin viscous sheets can also be induced by body forces. For instance,
when an air bubble rising in a viscous liquid reaches the surface, a thin film of liquid
separates it from ambient air. When this film is punctured, the air trapped in the bubble
escapes; the hole grows while the viscous film falls under its own weight and makes
wrinkles in the azimuthal direction (Debrégeas et al. 1998; Da Silveira et al. 2000).
The same phenomenon occurs when a very viscous sheet drapes a stick (Boudaoud &
Chäıeb 2001). In both cases, a semi-quantitative analysis taking advantage of the analogy
between viscous and elastic sheets showed that gravity generates a compressive stress in
the plane tangent to the sheet, while the most unstable mode is selected by a balance
between gravity and viscous forces. Finally, the gravity-driven drawing of glass or polymer
sheets can generate stress in the sheet and induce buckling (Filippov & Zheng 2010).

Most of the theoretical work on viscous sheets has relied on dimensional reduction.
Indeed, asymptotic expansions in the limit of a small ratio between thickness and longi-
tudinal length scale enable the derivation of governing equations for the dynamics of the
mid-surface. Compared to the full, three-dimensional equations (e.g. Benjamin & Mullin
1988), dimensional reduction retains only the relevant modes of stretching and bending
and can make more advanced analyses possible, like exploring the non-linear regime; it
also eases numerical simulations. Dimensionally reduced models have been derived un-
der specific assumptions: by Buckmaster et al. (1975); Ribe (2001) for two-dimensional
problems (planar threads and cylindrical sheets); for axisymmetric three-dimensional
problems where bending is dominated by stretching (Pearson & Petrie 1970a,b; Yarin
et al. 1994); for non-axisymmetric, 3D problems where bending is dominated by stretch-
ing (van de Fliert et al. 1995), with applications to the drawing of a tube (Griffiths &
Howell 2007, 2008, 2009) and of a flat sheet (Scheid et al. 2009; Filippov & Zheng 2010).
Bending effects have only been considered by Howell (1996) in the case of nearly flat
sheets and by Ribe (2002) for general shapes.

In this paper, we investigate the dynamics of nearly flat sheets. The closest work in the
literature is that of Howell (1996) and Ribe (2002). Our approach is to derive the various
limit models in a unified way, to consider arbitrary external forces (thereby extending
Howell’s results), and derive the equations in a form that is suited to stability analyses.
Ribe considers finite rotations and the resulting equations are fairly general, except that
external forces in the bulk are assumed to be constant. Our equations, being based on
the small slope approximation, are compact and perfectly suited to the linear and non-
linear stability analyses of floating viscous sheets. We use formal asymptotic expansions
to deduce the equations for thin sheets from the equations for 3D viscous fluids, building
on previous work done in the context of elastic plates such as the classical paper of Ciarlet
(1980).

In Section 2 we derive two limit models depending on the magnitude of external load-
ing. The full set of equations governing the thin sheet in 3D are given in Section 2.4. The
analysis of stability of a floating sheet is prepared in Section 3: the general equations
for thin viscous sheets are specified to the case of a floating sheet subjected to gravity,
buoyancy and surface tension (§ 3.1); an unperturbed solution is defined (§ 3.2) and a lin-
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Figure 2. Cross-section of a viscous sheet in the plane (x, z) in a 2D geometry.

earization near this solution is introduced (§ 3.3). The linear stability of a floating sheet
is investigated in Section 4 at short times, and in Section 5 at long times. An amplitude
equation characterizing the non-linear buckling amplitude is derived in Section 4.2. In
Section 6 we discuss the range of validity of our analysis and provide orders of magnitude
relevant to applications.

2. Derivation of the models

We start by deriving a set of dimensionally reduced equations for thin viscous sheets,
which are used in the stability analyses in the second part of the paper. In Section 2.1,
we formulate the problem in two dimensions and introduce some useful notation. In
Section 2.2, the equations for the balance of momentum in the fluid are expanded with
respect to the small aspect ratio — thickness to typical longitudinal length — allowing
integration across the thickness and yielding equilibrium equations for the stress resul-
tants and torques at different orders. These equations of equilibrium are combined with
the constitutive law for a Newtonian viscous fluid in Section 2.3. In Section 2.4, the
assumption of a two-dimensional flow is relaxed. The reader not interested in the details
can skip ahead to this last Section 2.4, where the equations governing the dynamics of
viscous sheets subjected to external forces are summarized.

2.1. Equilibrium equations in the 2D case

Cartesian coordinates (x, y, z) are chosen such that the sheet lies in the (x, y) plane in
undeformed state. We start with a two-dimensional formulation, assuming invariance
with respect to the y-direction. At any time t, let z = H(x, t) be the position of center
surface of the sheet, and h(x, t) its thickness. All variables, including forces, may depend
on time; however this dependence shall be implicit to make notations more compact (the
variable t is often omitted). The equations of the interfaces are

z±(x, t) = H(x, t)± h(x, t)

2
, (2.1)

where the ‘+’ is for the upper interface, and the ‘−’ for the lower one. Let n±(x) and
t±(x) denote the unit normals and tangents at either interface, with the orientation
chosen as in figure 2. Both volume and surface forces may be applied on the sheet. These
forces are collectively represented by a volume distribution of force f(x, z, t): surface forces
such as surface tension are taken care of by a Dirac contribution to the volume force f .
We consider the limit of a small Reynolds number ρUL/µ (µ being the fluid dynamic
viscosity) and neglect inertial terms in the equations of equilibrium. Equilibrium in the
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bulk and along the interfaces read, in terms of Cauchy stress tensor S:

∇ · S(x, z) + f(x, z) = 0 for z−(x) ≤ z ≤ z+(x) (2.2a)

S(x, z±(x)) · n±(x) = 0. (2.2b)

Let us introduce some mathematical operators acting on a vertical slice of fluid. They
shall help us keep compact notations while dealing with arbitrary distributions of forces
across thickness. Given some function, φ(x, z), defined in the volume occupied by the
sheet, we first define its thickness-integral, its first and second moments:

[I · φ](x) =

∫ z+(x)

z−(x)

φ(x, z) dz (2.3a)

[J · φ](x) =

∫ z+(x)

z−(x)

(z −H(x))φ(x, z) dz (2.3b)

[K · φ](x) =

∫ z+(x)

z−(x)

(z −H(x))2

2
φ(x, z) dz (2.3c)

These operators will be useful for projecting the 3D forces into effective forces for the 2D
model, see equations (2.30a) and (2.30b). In addition, the following two operators will be
useful in the intermediate steps of the calculation:

[A · φ](x, z) =

∫ z

H(x)

φ(x, z′) dz′, (2.3d)

[χ · φ](x) =

∫ z+(x)

z−(x)

kχ(x, z)φ(x, z) dz, (2.3e)

where the kernel is defined by

kχ(x, z) =

{
+ 1/2 if H(x) < z < z+(x)

− 1/2 if z−(x) < z < H(x).
(2.3f )

Note that the result of all these operators is a function of the sole variable x, except for
the ‘indefinite’ integral operator [A · φ](x, z) which retains an additional dependence on
the transverse coordinate z. The operators listed here satisfy useful identities derived in
Appendix A.

2.2. Expansion at different orders

The model is derived by expansion with respect to the small aspect-ratio ε,

ε =
z∗

L
,

where z∗ is the typical value of the sheet thickness h(x), and L is a typical in-plane
length. In-plane coordinate x is rescaled using L:

x = L x̃, (2.4a)

where primes are used for rescaled variables. In contrast, the transverse coordinate z,
thickness, and deflection of the center-surface H(x) are rescaled using z∗ = ε L:

z = ε L z̃ (2.4b)

h(x) = ε L h̃(x̃) (2.4c)

H(x) = ε L H̃(x̃). (2.4d)
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The rescaled interface position z̃±(x̃) is defined from equation (2.1) as z̃±(x̃) = 1
ε Lz±(x) =

H̃(x̃)± h̃(x̃)
2 . The upper and lower interfaces have small slope and the unit normal there

read at order one in ε:

n±(x̃) =

(
∓ε z̃±,x̃(x̃)
±1

)
. (2.5)

Here and elsewhere we use the notation φ,s = ∂φ/∂s for the partial derivative of a
function φ with respect to the variable s.

We consider the following rescaling and expansion for the internal stress S

Sxx(x, z) =
µU

L

(
ε0 S̃(0)

xx (x̃, z̃) + · · ·
)

, (2.6a)

Sxz(x, z) =
µU

L

(
ε S̃(1)

xz (x̃, z̃) + · · ·
)

, (2.6b)

Szz(x, z) =
µU

L

(
ε0 S̃(0)

zz (x̃, z̃) + ε2 S̃(2)
zz (x̃, z̃) + · · ·

)
, (2.6c)

where ellipses denote higher-order terms. The overall factor µU/L has been introduced
by anticipating the viscous constitutive law, U being defined later as the typical in-plane

velocity. For all terms but S̃
(0)
zz , the proposed hierarchy of powers of ε in the right-hand

sides follows from a balance of the stress gradients Sij,j arising in the divergence in
equation (2.2a); note that spatial derivatives scale differently along the in-plane and out-

of-plane directions, namely ∂/∂x ∼ ε0 and ∂/∂z ∼ 1/ε. The additional term S̃
(0)
zz of order

ε0 is required because of the constitutive relation of the fluid. The pressure required to
ensure incompressibility forces the orthogonal components Sxx and Szz to have the same
leading order with respect to ε, see equations (2.17a) and (2.28) — even if the fluid were
compressible, the components Sxx and Szz would still be coupled as both depend linearly
on the components xx and yy of the strain rate tensor.

Substituting these scaling for the stress into the balance of forces (2.2a), we find that
the net internal force ∇ · S is of order 1 along the x axis, and has contributions of order
1/ε and ε along the z axis; consistency dictates the following scaling for the applied forces
(density per unit volume):

fx(x, z) =
µU

L2

(
f̃ (0)
x (x̃, z̃) + · · ·

)
(2.7a)

fz(x, z) =
µU

L2

(
1

ε
f̃ (−1)
z (x̃, z̃) + ε f̃ (1)

z (x̃, z̃) + · · ·
)

. (2.7b)

Here, fx and fz denote the projections of the force f onto the x and z directions: f(x, z) =(
fx(x, z), 0, fz(x, z)

)
. We have been led naturally to assume different scaling assumptions

for the in-plane and out-of-plane components of the force in the presence of a slender
geometry.

To avoid cumbersome notations, primes will be dropped in the remainder of this sec-
tion: we shall always be dealing with rescaled quantities, unless specified otherwise.

We proceed to plug these expansions into the general equations for a 2D viscous fluid.
Let us start with the equilibrium (2.2a), considered at order 0 along the x direction, and
at orders both (−1) and 1 along the z direction:

S(0)
xx,x(x, z) + S(1)

xz,z(x, z) + f (0)
x (x, z) = 0 (2.8a)

S(0)
zz,z(x, z) + f (−1)

z (x, z) = 0 (2.8b)

S(2)
zz,z(x, z) + S(1)

xz,x(x, z) + f (1)
z (x, z) = 0. (2.8c)
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Regarding the consistency with respect to the parameter ε, recall that z is a first order

quantity and so ∂/∂z is of order 1/ε; as a result, the term S
(1)
xz,z for instance is of order

ε/ε = ε0, and so is consistent with the other terms in the first equation.
Similarly, equation (2.2b) for the continuity of stress at the interfaces are spelled out

at order 1 along the x direction, and at orders 0 and 2 along the z direction:

−z±,x(x)S(0)
xx (x, z±(x)) + S(1)

xz (x, z±(x)) = 0 (2.9a)

S(0)
zz (x, z±(x)) = 0 (2.9b)

−z±,x(x)S(1)
xz (x, z±(x)) + S(2)

zz (x, z±(x)) = 0. (2.9c)

A solvability condition for S
(0)
zz (also known as a Fredholm alternative) can be found

by integrating the left-hand side of equation (2.8b) with respect to z and inserting the

boundary conditions (2.9b) into
∫ z+
z−

S
(0)
zz,z dz = S

(0)
zz (x, z+) − S

(0)
zz (x, z−). This yields∫ z+

z−
f

(−1)
z dz = 0 or, in compact notation:

[I · f (−1)
z ](x) = 0. (2.10)

This equation implies a balance of transverse forces at dominant order, f
(−1)
z . An equation

for the balance of transverse forces at second order, f
(1)
z , will be derived later by pushing

the expansion farther, see equation (2.15).
The axial balance at first order is found by integration of equation (2.8a) with respect

to z:
[
I · (S(0)

xx,x)
]

+
[
I · (S(1)

xz,z)
]

+
[
I · f (0)

x

]
= 0. Using the identities (A 1) and (A 2)

derived in the Appendix A to rewrite the first and second term, we have(
d[I · S(0)

xx ]

dx
− (z+),x S

(0)+
xx + (z−),x S

(0)−
xx

)
+
(
S

(1)
xz+ − S

(1)
xz−

)
+ [I · f (0)

x ] = 0,

where S
(i)±
αβ is a short-hand notation for S

(i)
αβ(x, z±(x)). By equation (2.9a), four terms

cancel out in this equation and we have

Nxx,x(x) + [I · f (0)
x ](x) = 0, (2.11)

where we have introduced the membrane stress Nij , also known as the internal stress
resultant:

Nij(x, t) = [I · S(0)
ij ](x, t). (2.12)

Equation (2.11) is a balance of longitudinal forces, the first term coming from internal
stress, the second one from applied forces.

We push the expansion farther to obtain the transverse balance at the next order. Inte-

gration of equation (2.8c) with respect to z yields
[
I · (S(1)

xz,x)
]
+
[
I · (S(2)

zz,z)
]
+
[
I · f (1)

z

]
=

0. Repeating a similar calculation as that leading to equation (2.11) but using now the
other boundary condition (2.9c), we end up with

[I · S(1)
xz ],x(x) + [I · f (1)

z ](x) = 0. (2.13)

This equation still depends on a secondary quantity, S
(1)
xz , and needs more work.

To eliminate the shear stress S
(1)
xz , let us apply the moment operator J defined by

equation (2.3b) on both sides of equation (2.8a):

[J · (S(0)
xx,x)] + [J · (S(1)

xz,z)] + [J · f (0)
x ] = 0

The first term of this equation is rewritten using the identity (A 3) with γ = S
(0)
xx (inte-
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gration by parts along the x direction), and the second term using the other identity (A 4)

with γ = S
(1)
xz (integration by parts along the z direction). This yields(

[J · S(0)
xx ],x +H,x [I · S(0)

xx ]− h(x)

2

(
z+,x S

(0)+
xx + z−,x S

(0)−
xx

))
· · ·

+
(
− [I · S(1)

xz ] +
h(x)

2

(
S(1)+
xz + S(1)−

xz

))
+ [J · f (0)

x ] = 0.

By the boundary condition (2.9a), all terms proportional to h(x) cancel out. Solving for
the resultant of the shear stress, also known as the internal normal force, we find:

[I · S(1)
xz ](x) = [J · S(0)

xx ],x(x) +H,x [I · S(0)
xx ](x) + [J · f (0)

x ](x). (2.14)

Substituting this into equation (2.13), we finally obtain the balance of transverse forces
at second order in compact form:

Mxx,xx(x) + (H,xNxx),x(x) + [J · f (0)
x ],x(x) + [I · f (1)

z ](x) = 0, (2.15)

where we have introduced the bending moment Mij , defined by

Mij(x, t) = [J · S(0)
ij ](x, t). (2.16)

Equation (2.15) complements the balance of transverse forces at dominant order 0, ob-
tained earlier in equation (2.10). While the equation at dominant order was uncoupled
to the dynamics of the sheet, the new equation (2.15) couples the viscous stress Mxx and

Nxx to the applied force f
(0)
x and f

(1)
z .

These equations are interpreted in Appendix B.

2.3. Combining with viscous constitutive law

The equations of equilibrium derived so far are valid for any thin sheet in the approxi-
mation of small slope. We shall now introduce the constitutive law for an incompressible,
purely viscous Newtonian fluid with uniform dynamic viscosity µ — the case of thin
sheets with non-uniform viscosity across thickness is considered in a different paper by
the same authors (Pfingstag et al. 2011). Let u(x, z) be the velocity in the fluid. Con-
servation of volume and Stokes law read, returning temporarily to non-scaled variables:

∇ · u(x, z) = 0, (2.17a)

S(x, z) = −p(x, z) 1 + 2µD(x, z), (2.17b)

where the strain rate tensor D(x, z) is the symmetric part of the gradient of velocity.
The components of the velocity are noted

u(x, z) =
(
u(x, z), 0, w(x, z)

)
,

The second component along the y axis is set to zero since we assume a two-dimensional
flow for the moment but this assumption will be relaxed later. There should be no
confusion between the vector u and its x component, noted u.

At the interfaces, one more set of conditions involving the velocities is required in order
to ensure kinematic compatibility:

w(x, z±(x)) = z±,t(x) + z±,x(x)u(x, z±(x)). (2.18)

We consider additional scaling assumptions, which complement those given at the
beginning of Section 2.2. We first use the constitutive law (2.17b) to rescale the pressure
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and strain rate consistently with equation (2.6):

D(x, z) =
U

L
D̃(x̃, z) (2.19a)

p(x, y) =
µU

L
p̃(x̃, z̃) (2.19b)

We introduced earlier the quantity U , defined as the typical in-plane velocity: we shall
therefore assume that the expansion for u(x, z) starts like

u(x, z) = U
(
ũ(0)(x̃, z̃) + · · ·

)
, (2.19c)

where the ellipsis stands again for higher-order terms.
We also need to specify how time and transverse velocity scale with ε. Two different

sets of scaling can be considered, as in the work of Howell (1996), namely the Trouton
scaling and the BNT scaling. Here BNT stands for Buckmaster Nachman and Ting who
first introduced this scaling (Buckmaster et al. 1975; Buckmaster & Nachman 1978).
The Trouton scaling assumes t ∼ L/U and w = ε U , while the BNT scaling assumes
t ∼ ε2 L/U and w = ε−1 U . We recall here that since inertia has been neglected, time
only appears in the kinematic equation (2.18) that describes the evolution of the sheet
geometry. As will become apparent in the reduced equations for the sheet, the Trouton
scaling is more elementary and corresponds to a deformation dominated by the stretching
of the sheet, while the BNT scaling accounts for both stretching and bending. Both cases
are taken care of by the notation

t = ε2m
L

U
t̃, (2.20a)

w(x, z) = ε1−2m U
(
w̃(1−2m)(x̃, z̃) + · · ·

)
. (2.20b)

Value of the index m is defined to be 0 in Trouton case, and 1 in BNT case:

m =

{
0 (Trouton)

1 (BNT)
, (1−m) =

{
1 (Trouton)

0 (BNT)
. (2.20c)

We shall use the ‘reciprocal’ indices m and (1 −m) routinely as a mean to track terms
that are present with BNT scaling only, or with Trouton scaling only. Since m is only
allowed to take on values 0 or 1, the following identity will be used later to simplify some
expressions:

m (1−m) = 0. (2.21)

In what follows, we shall again drop primes for the sake of readability: we deal implicitly
with rescaled quantities, unless specified otherwise.

2.3.1. Solving for the velocity field

Let us consider the strain rate tensor D(x, z). The axial strain Dxx = u
(0)
,x (x, z)+ . . . is

a quantity of order ε0 with our rescaling; transverse strain Dzz = ε−2m w
(1−2m)
,z (x, z)+. . .

is a quantity of order ε−2m, that is of order ε0 in Trouton case (m = 0) and of order
ε−2 in BNT case. In both cases, the incompressibility condition (2.17a) requires that the

equation Dxx + Dzz = 0 holds at its leading order, ε−2m: we have w
(1)
,z + u

(0)
,x = 0 in

Trouton case, or w
(−1)
,z = 0 in BNT case. In compact notation, we have

w(1−2m)
,z (x, z) + (1−m)u(0)

,x (x, z) = 0. (2.22a)

Consider now the shear strain rate, Dxy(x, z) = 1
2 (u,z +w,x). Its leading order, which
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is formally ε−1 both in Trouton and BNT cases, has to cancel in order for the shear
stress Sxz to remain of order ε as implied by equation (2.6b), and not ε−1. The condition

u,z + w,x = 0 yields u
(0)
,z = 0 in Trouton case, and u

(0)
,z + w

(−1)
,x = 0 in BNT case, which

we summarize as

u(0)
,z (x, z) +mw(1−2m)

,x (x, z) = 0. (2.22b)

Substitution of equation (2.22b) into the derivative of equation (2.22a) with respect to

z yields, with the help of the identity (2.21): w
(1−2m)
,zz (x, z) = 0. A similar equation can

be derived by substituting equation (2.22a) into the derivative of equation (2.22b) with
respect to z. This yields

u(0)
,zz(x, z) = 0, w(1−2m)

,zz (x, z) = 0.

This implies that both u(0)(x, z) and w(1−2m)(x, z) depend linearly on z: for some func-
tions u(x), w(x), ŭ(x) and w̆(x) depending on x (and implicitly on time t) but not on z,
we have

u(0)(x, z) = ŭ(x) (z −H(x)) + u(x),

w(1−2m)(x, z) = w̆(x) (z −H(x)) + w(x).

The functions ŭ(x) and w̆(x) can be found by substituting into equations (2.22): ŭ(x) =
−mw,x(x) and w̆(x) = −(1−m)u,x(x). We have just determined the leading orders of
the axial and transverse velocities u and w, up to two functions u(x) and w(x) that do
not depend on z:

u(0)(x, z) = −mw,x(x) (z −H(x)) + u(x) (2.23a)

w(1−2m)(x, z) = −(1−m)u,x(x) (z −H(x)) + w(x). (2.23b)

Let us now consider the kinematic compatibility condition (2.18), which we read off at
its leading order ε1−2m:

w(1−2m)(x, z±(x)) = z±,t(x) + (1−m) z±,x(x)u(0)(x, z±(x)).

Note that the last term, of order ε is not visible at the order ε1−2m = ε−1 when m =
1, but is visible at the order ε1−2m = ε when m = 0, hence the prefactor (1 − m).
Inserting the definition of z± from equation (2.1) and the explicit form of w(1−2m) found
in equation (2.23b), we have

−(1−m)u,x

(
±h

2

)
+ w =

(
H,t ±

h,t
2

)
+ (1−m)

(
H,x ±

h,x
2

)
u. (2.24)

This equation has been simplified by dropping a term containing a factor m(1−m), which
is zero by equation (2.21). One condition holds on the upper interface (when replacing
the symbol ± by +), and another condition holds on the lower interface (replacing ± by
−). Considering the average of these two conditions (2.24), we find

w(x) = H,t(x) + (1−m)H,x(x)u(x).

When replaced into equation (2.23a), this yields an explicit solution for the in-plane
velocity, after using equation (2.21) one more time:

u(0)(x, z) = u(x)−mH,xt (z −H(x)). (2.25)

In Trouton case (m = 0), the in-plane velocity u(0) appears to be independent of the
transverse coordinate z; in BNT case, the last term shows up, accounting for the kine-
matics of bending.
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Considering now the difference of equations (2.24) from the lower interface to the upper
one, we find

−(1−m)u,x(x)h(x) = h,t + (1−m)h,x(x)u(x),

which can be put in a more compact form:

h,t(x) + (1−m) (h(x)u(x)),x = 0. (2.26)

This is the conservation of volume integrated across the thickness: it reads h,t+(hu),x = 0
in Trouton case; in BNT case, we have simply h,t = 0.

2.3.2. Solving for the in-plane stress

Consider the equation (2.8b) for transverse equilibrium at order ε−1, namely S
(0)
zz,z(x, z)+

f
(−1)
z (x, z) = 0. The general solution of this differential equation for S

(0)
zz can be expressed

in terms of the operator A carrying out z integration and of a constant of integration
Szz(x) independent of z:

S(0)
zz (x, z) = −[A · f (−1)

z ](x, z) + Szz(x).

Substituting this into equation (2.9b), which expresses transverse equilibrium of the inter-

face at order ε0, we find Szz(x) = [A ·f (−1)
z ](x, z+(x)) and Szz(x) = [A ·f (−1)

z ](x, z−(x)).
Taking the average of these equalities, and using identity (A 5), we find the constant of

integration Szz(x) = [χ · f (−1)
z ](x). Therefore,

S(0)
zz (x, z) = −[A · f (−1)

z ](x, z) + [χ · f (−1)
z ](x). (2.27)

Finally, the constitutive law (2.17b) yields S
(0)
xx (x, z) = 2u

(0)
,x (x, z)−p(x, z) and S

(0)
zz (x, z) =

−2u
(0)
,x (x, z)−p(x, z): by the condition of incompressibility, Dzz = −Dxx = −u(0)

,x . Elim-
inating the pressure, we find

S(0)
xx (x, z) = 4u(0)

,x (x, z) + S(0)
zz (x, z). (2.28)

Substituting now our solution for u(0)(x, z) from equation (2.25), and our solution for

S
(0)
zz (x, z) from equation (2.27), we find an explicit solution for the in-plane stress:

S(0)
xx (x, z) = 4u,x(x)−4m

(
H,xt(x) (z−H(x))

)
,x
− [A ·f (−1)

z ](x, z)+[χ ·f (−1)
z ](x). (2.29)

Again, note that the Trouton and BNT cases yields similar expressions, except for the
bending term which is present only in BNT theory.

By integration of equation (2.29) across thickness we can now compute the stress
resultant Nij and moment Mij defined earlier in equations (2.12) and (2.16). Using the
identities (A 6a) and (A 6b) and the transverse equilibrium in equation (2.10) to simplify

the terms proportional to f
(−1)
z , we have:

Nxx(x) = 4µh(x)
(
u,x(x) +mH,xt(x)H,x(x)

)
+ [J · f (−1)

z ](x), (2.30a)

Mxx(x) = −m µh3(x)

3
H,xxt(x) + [K · f (−1)

z ](x). (2.30b)

Note that the transverse force f
(−1)
z appears in the expressions of the longitudinal stress

resultant and moment; this contamination can be attributed to the coupling via the
pressure. Even though its value is µ = 1 in our choice of rescaled units, we have restored
the viscosity µ in the above equations for improved readability.
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2.4. Generalization to 3D

We recapitulate all the equations that govern the dynamics of the viscous sheet, which
have been obtained previously by expansion. In passing, we relax the assumption of
invariance along the y direction (3D case); we shall not justify again the derivation of the
3D setting as it goes along the same lines as the 2D setting. The in-plane variables are now
x and y; the in-plane components of the external force are noted (fx(x, y, z), fy(x, y, z)).
We describe the evolution of the thickness h(x, y, t) and height H(x, y, t) of the sheet,
and the in-plane average velocity (u(x, y, t), v(x, y, t)). As earlier, the Trouton and BNT
models are gathered in a single set of equations, by introducing two indices (1−m) and
m: the Trouton model is recovered by setting (1 − m) = 1 and m = 0, and the BNT
model by (1−m) = 0, m = 1.

The following set of equations extends the equations of the previous section. Mass
conservation (2.26) becomes:

h,t(x, y) + (1−m)

(
∂(u(x, y)h(x, y))

∂x
+
∂(v(x, y)h(x, y))

∂y

)
= 0. (2.31)

The axial force balance (2.11) now reads:{
Nxx,x(x, y) +Nxy,y(x, y) = −[I · f (0)

x ](x, y)

Nxy,x(x, y) +Nyy,y(x, y) = −[I · f (0)
y ](x, y).

(2.32)

The transverse balance of force at order 0 reads, from equations (2.10):

[I · f (−1)
z ] = 0, (2.33a)

and order 2, from equation (2.15):(
Mxx,xx + 2Mxy,xy +Myy,yy

)
+
(
NxxH,xx + 2NxyH,xy +NyyH,yy

)
+
(
−H,x [I · f (0)

x ]−H,y [I · f (0)
y ] + [J · f (0)

x ],x + [J · f (0)
y ],y

)
+ [I · f (1)

z ] = 0. (2.33b)

Note that we have expanded the derivative in the second term in equation (2.15) here,
and simplified using the in-plane equilibrium. The membrane stress Nij and the inter-
nal moment Mij are given by effective constitutive laws, which extend those given in
equations (2.30):

Nxx(x, y) = 2µh(x, y)
(
2(u,x(x, y) +mH,xtH,x) + (v,y(x, y) +mH,ytH,y)

)
+[J · f (−1)

z ](x, y)

Nxy(x, y) = µh(x, y)
(
(u,y(x, y) +mH,xtH,y) + (v,x(x, y) +mH,ytH,x)

)
Nyy(x, y) = 2µh(x, y)

(
(u,x(x, y) +mH,xtH,x) + 2(v,y(x, y) +mH,ytH,y)

)
+[J · f (−1)

z ](x, y),
(2.34)



Mxx(x, y) = −m µh3(x, y)

3

(
H,xxt + 1

2 H,yyt

)
+ [K · f (−1)

z ](x, y)

Mxy(x, y) = −m µh3(x, y)

3

(
1
2 H,xyt

)
Myy(x, y) = −m µh3(x, y)

3

(
H,yyt + 1

2 H,yyt

)
+ [K · f (−1)

z ](x, y).

(2.35)
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Here the mean surface position H is a function of x, y and t. Equations (2.34) and (2.35)
are written in compact form and justified in full detail in a follow-up paper by the same
authors (Pfingstag et al. 2011).

2.5. Discussion

These equations generalize the results of Howell (1996) to arbitrary forces. The general
equations of Ribe (2002) can be shown to be equivalent to the compact set of equations
above in the case of small slope and constant bulk external forces. The order of magnitude
of the transverse forces and the scaling for the time should now be chosen depending on
the specific problem considered. Note that the order of magnitude U of the in-plane
velocity can be set by the forcing applied along the boundaries, or by distributed in-
plane forces fx and fy.

When transverse forces fz are large compared to µU/L2, they should be considered to

be of order (−1) and assigned to the contribution f
(−1)
z ; then the transverse balance is

given by equation (2.33a), and equation (2.33b) can be discarded. In that case, the BNT
scaling suppresses all time derivatives, indicating that the time scale considered is too
short for the sheet to evolve. By contrast, the Trouton scaling corresponds to observing
the sheet over a much longer time scale, where it does evolve. In such circumstances,
Trouton scaling is appropriate and BNT scaling can be viewed as a degenerate case.

By contrast, when transverse forces fz are small compared to µU/L2, one should set

f
(−1)
z = 0, assign them to f

(1)
z and use equation (2.33b) for the transverse balance of

forces. Combined with Trouton scaling, this equation is singular in the presence of com-
pressive stress: equation (2.33b) attempts to describe buckling but with a zero bending
stiffness: with m = 0 in equation (2.35), the bending rigidity appears to be zero in
Trouton case. This leads to spatial undulations with arbitrarily small wavelength, a phe-
nomenon known as membrane wrinkling in the context of elastic plates and shells, see
e.g. the work of Dret & Raoult (1995). Therefore in the case of ‘small’ transverse forces,
BNT scaling is more appropriate.

Note that we can combine the Trouton and BNT models into a single, hybrid model.

The trick is (i) to re-sum, i.e. write the equations for fz = ε−1 f
(−1)
z + ε f

(1)
z + · · · and

not for f
(−1)
z and , f

(1)
z separately: this has the effect of removing ε from the equations

and there is no longer need to keep track of the indices in parentheses for the order; (ii)
to retain all terms that appear either in the Trouton or BNT model; we take m = 0
in (2.31):

h,t(x, y) +
∂(u(x, y)h(x, y))

∂x
+
∂(v(x, y)h(x, y))

∂y
= 0, (2.36)

m = 1 in the stress resultants (2.34) and moments (2.35):



Nxx(x, y) = 2µh(x, y)
(
2(u,x(x, y) + H,xtH,x) + (v,y(x, y) + H,ytH,y)

)
+[J · f (−1)

z ](x, y)

Nxy(x, y) = µh(x, y)
(
(u,y(x, y) + H,xtH,y) + (v,x(x, y) + H,ytH,x)

)
Nyy(x, y) = 2µh(x, y)

(
(u,x(x, y) + H,xtH,x) + 2(v,y(x, y) + H,ytH,y)

)
+[J · f (−1)

z ](x, y),

(2.37)
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Figure 3. Geometry of a floating viscous sheet in a 3D geometry.



Mxx(x, y) = − µh3(x, y)

3

(
H,xxt + 1

2 H,yyt

)
+ [K · f (−1)

z ](x, y)

Mxy(x, y) = − µh3(x, y)

3

(
1
2 H,xyt

)
Myy(x, y) = − µh3(x, y)

3

(
H,yyt + 1

2 H,yyt

)
+ [K · f (−1)

z ](x, y).

(2.38)

Then, the problem is governed by mass conservation (2.36), longitudinal force bal-
ance (2.32) and transverse force balance (2.33b), complemented with the stress resul-
tants (2.37) and moments (2.38). The resulting hybrid model enjoys the following prop-
erty: it boils down to either the Trouton or BNT model when the corresponding scaling
assumptions are made. As such, it provides a formal unification of the two models which
can be convenient e.g. to set up numerical simulations.

3. Application to the stability of floating viscous sheets

3.1. Case of a floating, 3D sheet with gravity, buoyancy and surface tension

In the remainder of this paper, we apply our equations to a specific geometry: a thin,
viscous sheet floating on a bath at hydrostatic equilibrium, with surface tension at the
lower and upper interfaces. Each of the surface tensions γ+ and γ− at the upper and
lower interfaces are assumed to be uniform. An in-plane flow of typical velocity U is
imposed in the sheet, e.g. through in-plane loading. The density of the sheet material ρ1

is smaller than that of the bath ρ2. Let z = Hb be the height of the free surface of the
bath when the sheet is absent. The bath is an inviscid fluid at rest; the pressure in the
bath is purely hydrostatic, p = ρ2 g (Hb − z), where g is the acceleration of gravity.

The weight per unit volume of the sheet is simply (ρ1 g). Let z∗ be the typical vertical
displacement of the interfaces, be it due to deformations of the initially planar mid-
surface, or to variations of thickness. Surface forces applied at the interfaces come from
hydrostatic pressure, of order (ρ2 g z

∗), and capillary pressure, of order (γ z∗/L2). Here γ
is the typical value of surface tension and L an characteristic in-plane length, such as the
wrinkling wavelength, or a scale imposed by the in-plane flow. These surface forces can
be compared to the typical viscous force per unit volume, (µU/L2), times the typical
thickness z∗, using nondimensional numbers. Jeffreys number (Jeffreys 1925; O’Keefe
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1969) compares gravity and viscosity,

Je =
ρ g L2

µU
, (3.1)

where ρ stands for the order of magnitude of any of the densities. Similarly, the inverse
capillary number compares surface tension and viscosity

1/Ca =
γ

µU
. (3.2)

A number of models could be considered based on these ingredients. We focus here
on the case where gravity and surface tension both need to be considered in addition
to viscosity. This is the most interesting situation since we have two factors that can
limit the instabilities and which are potentially in competition: one relevant to large
wavelengths and the other one to small wavelengths. Specifically, we consider two cases:

(a) Both the Jeffreys Je and inverse capillary 1/Ca number are small; transverse forces
should be considered of order ε. The argument of Section 2.5 suggests that we then
consider short times and use the BNT scaling. The expressions of the applied forces read

f (−1)
z = 0

f (1)
z = − ρ1 g + δ+(x, y, z) (γ+)κ+(x, y) + δ−(x, y, z)

[
(γ−)κ−(x, y) + ρ2 g

(
Hb −H +

h

2

)]
f (0)
x = 0

f (0)
y = 0, (3.3)

where δ±(x, y, z) = δ(z−z±(x, y)) denote the Dirac distributions centered on an interface
z = z±(x, y), used here to account for surface forces, namely the capillary force and the
force arising from pressure in the bath. In addition, we have introduced the following
notation for the curvature of the lower and upper interfaces. :

κ±(x, y) = ∇2z±(x, y) = ∇2

(
H(x, y)± h(x, y)

2

)
.

We will refer to this case Je� 1, 1/Ca� 1 and t ∼ (z∗)2/(LU) as the BNT case.
(b) Alternatively, we consider the case where both the Jeffreys Je and inverse capillary

1/Ca numbers are large; transverse forces should be considered of order 1/ε, and are

considered part of f
(−1)
z in our equations. Since slope of the sheet is order ε, the projection

of normal forces onto the (x, y) plane are of order ε0, and enter into f
(0)
x and f

(0)
y :

f (−1)
z = −ρ1g + δ+(x, y, z) (γ+)κ+(x, y) + δ−(x, y, z)

[
(γ−)κ−(x, y) + ρ2g

(
Hb −H +

h

2

)]
f (1)
z = 0

f (0)
x =

(
H +

h

2

)
,x

(γ+)κ+(x, y)−
(
H − h

2

)
,x

[
(γ−)κ−(x, y) + ρ2g

(
Hb −H +

h

2

)]
f (0)
y =

(
H +

h

2

)
,y

(γ+)κ+(x, y)−
(
H − h

2

)
,y

[
(γ−)κ−(x, y) + ρ2g

(
Hb −H +

h

2

)]
(3.4)

As explained in section 2.5, these large forces are studied at long times and using the
Trouton scaling. We will simply refer to this case Je� 1, 1/Ca� 1 and t ∼ L/U as the
Trouton case.

These external forces are replaced into equations (2.31), (2.32) and (2.33). We keep
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notations compact using the number m = 0 for the Trouton case and m = 1 for the BNT
case. We obtain the following set of equations. First, mass conservation remains

h,t(x, y) + (1−m)

(
∂(u(x, y)h(x, y))

∂x
+
∂(v(x, y)h(x, y))

∂y

)
= 0. (3.5)

The in-plane force balance is obtained from equation (2.32), using the forces given in
equations (3.4) and (3.3) integrated over thickness:

Nxx,x +Nxy,y = −(1−m)

(
H +

h

2

)
,x

(γ+)κ+(x, y)

+(1−m)

(
H − h

2

)
,x

[
(γ−)κ−(x, y) + ρ2 g

(
Hb −H +

h

2

)]
(3.6a)

Nxy,x +Nyy,y = −(1−m)

(
H +

h

2

)
,y

(γ+)κ+(x, y)

+(1−m)

(
H − h

2

)
,y

[
(γ−)κ−(x, y) + ρ2 g

(
Hb −H +

h

2

)]
(3.6b)

Inserting the forces in equations (3.4) and (3.3) into equation (2.34), and carrying out
evaluation of the slice-based operators, we find the membrane stress:

Nxx(x, y) = 2µh [2(u,x +mH,xtH,x) + v,y +mH,ytH,y]

+ (1−m)h
γ+

2
κ+(x, y)− (1−m)h

γ−
2
κ−(x, y)

− (1−m)h
ρ2g

2

(
Hb −H +

h

2

)
Nxy(x, y) = µh [u,y +mH,xtH,y + v,x +mH,ytH,x]

Nyy(x, y) = 2µh [u,x +mH,xtH,x + 2(v,y +mH,ytH,y)]

+ (1−m)h
γ+

2
κ+(x, y)− (1−m)h

γ−
2
κ−(x, y)

− (1−m)h
ρ2g

2

(
Hb −H +

h

2

)
(3.7)

In the Trouton case, the out-of-plane force balance (2.33a) boils down to

−(γ+)κ+(x, y)− (γ−)κ−(x, y)− ρ2 g

(
Hb −H +

h

2

)
+ ρ1 g h = 0 (m = 0), (3.8a)

which is a partial differential equation for h and H. In the BNT case, we note that

[K · f (−1)
z ](x, y) = 0: we substitute the remaining terms in the expressions (2.35) of

the moment, namely Mαβ(x, y) = −(µh3/3) (H,αβt + H,γγt δαβ)/2, into the transverse
balance (2.33b), which yields:

NxxH,xx + 2NxyH,xy +NyyH,yy =
µh3

3
(H,xxxxt + 2H,xxyyt +H,y4t) · · ·

− (γ+)κ+(x, y)− (γ−)κ−(x, y)− ρ2 g

(
Hb −H +

h

2

)
+ ρ1 g h (m = 1) (3.8b)
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3.2. Base state

We consider a flat configuration, H(x, y, t) = H0(t) and h(x, y, t) = h0(t) which is spa-
tially uniform, but may evolve with time. The remainder of this paper is concerned with
a local analysis of stability of this flat configuration. By ‘local analysis’, we mean that
the typical scale of the in-plane flow is assumed to be much larger than the wavelength
of the possibly unstable modes. The analysis is carried out over an intermediate length
scale, where the strain rate D can be considered uniform.

An in-plane flow can be present in this flat state, and can be driven by forcing at the
boundaries. In the remainder of the paper, our main goal is to compute growth rate of
unstable modes, depending on the properties of this flow. To start with, we consider an
in-plane flow that does not depend on time. This assumption can easily be relaxed: our
expressions for the growth rate C as a function of the steady flow parameters α and β
yield without modification the instantaneous growth rate as a function of the current
flow parameters in the case of a time-dependent flow. This idea is implemented in full
details in Section 5, see equation (5.2) in particular.

Let us call α and β the principal values of the 2D strain rate, ordered with the con-
vention

α < β. (3.9)

By convention, the x and y axes are aligned with the associated principal directions. This
makes the strain rate tensor diagonal, Dxx = α, Dxy = 0 and Dyy = β. With this choice
of axes, the in-plane velocity is given by

u0(x, y) = αx

v0(x, y) = β y.
(3.10)

In the right-hand side, we have omitted constants of integration representing a steady
rigid-body motion, which do not affect the stability. Note that indices in parentheses, such
as (0) in equation (2.23a) refer to the order in the expansion with respect to the small
aspect-ratio. By contrast, indices without parentheses refer to the expansion associated
with the analysis of stability: in equation above, u0 refers to the base solution, and u1,
introduced next, to the perturbation (marginally stable mode).

Conservation of mass (3.5) reads, for our planar solution:

h0,t(t) + (1−m) (α+ β)h0(t) = 0. (3.11)

In Trouton case (m = 0), the second term in non-zero and the thickness h0(t) of the
base flow must depend explicitly on time, except in the special case of a pure shear flow
(α+ β = 0).

In the absence of interface curvature, the transverse equilibrium (3.8a) or (3.8b) im-
poses the following buoyancy condition:

H0(t) = Hb −
(
ρ1

ρ2
− 1

2

)
h0(t). (3.12)

Being homogeneous by assumption, the base state satisfies the in-plane force bal-
ance (3.6) automatically. The membrane stress is given by the constitutive law (3.7)
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which reads, after substitution of equation (3.12):

N0
xx(t) = 2µ (2α+ β)h0(t)− (1−m)

ρ1 g h
2
0(t)

2
(3.13a)

N0
xy(t) = 0 (3.13b)

N0
yy(t) = 2µ (α+ 2β)h0(t)− (1−m)

ρ1 g h
2
0(t)

2
(3.13c)

This unperturbed membrane stress will appear in the equations for the linear stability.

3.3. Perturbation

We seek solutions to the equations (3.5–3.8) by perturbing this spatially homogeneous
base state:

h(x, y, t) = h0(t) + h1(x, y, t) (3.14a)

H(x, y, t) = H0(t) +H1(x, y, t) (3.14b)

u(x, y, t) = αx + u1(x, y, t) (3.14c)

v(x, y, t) = β y + v1(x, y, t) (3.14d)

where h0(t), H0(t), u0 = αx and v0 = β y characterize the flat base state of the previous
section, and h1(x, y, t), H1(x, y, t), u1(x, y, t), v1(x, y, t) stand for the perturbations to
thickness, mid-surface, and velocity.

As an illustration, we consider the case where the in-plane velocity is imposed at the
boundaries, which is far from the region of interest. In view of this, the perturbation to
velocity should vanish at infinity:

lim
(x,y)→∞

u1(x, y) = 0

lim
(x,y)→∞

v1(x, y) = 0.
(3.15)

The stability is investigated next. In Section 4 we treat the BNT case and find that the
most unstable modes are purely undulatory (thickness h remains constant); in Section 5
we study the Trouton case, and find that the unstable modes couple thickness and height
variations.

4. Small forces, short time: undulatory perturbation

In this Section we study the linear stability of the flat configuration under the scaling
assumptions (a) of Section 3.1, namely the BNT case (m = 1) with small transverse
forces and short time.

4.1. Linear stability analysis

By equation (3.5), the thickness remains unperturbed when m = 1:

h1(x, y, t) = 0. (4.1)

Physically, this means that perturbations to thickness become significant on time scales
that are much larger than those considered in the BNT case.

In the constitutive equation for membrane stress (3.7) all the non-linear terms rele-
vant to BNT case, such as H,xH,xt, appear as second-order quantities. Reading off the
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equation to first order, we have

N1
xx(x, y) = 2µh0 [2u1,x(x, y) + v1,y(x, y)]

N1
xy(x, y) = µh0 [u1,y(x, y) + v1,x(x, y)]

N1
yy(x, y) = 2µh0 [u1,x(x, y) + 2v1,y(x, y)] . (4.2)

These quantities are subjected to the in-plane equilibrium conditions (3.6) which for
m = 1 are homogeneous equations:

N1
xx,x(x, y) +N1

xy,y(x, y) = 0

N1
xy,x(x, y) +N1

yy,y(x, y) = 0. (4.3)

Together with the asymptotic conditions (3.15), these two equations (4.2) and (4.3)
constitute a well-posed problem for the velocities u1 and v1, which is uncoupled from the
transverse quantities h1 and H1 (this decoupling is classical in the analysis of buckling
near flat configurations, and comes from the up-down symmetry). Note that the time
derivatives u1,t or v1,t do not show up in the above set of equations. In fact, we recognize
the equations of 2D, linearized elasticity when u1 and v1 are identified with displacement,
and µ with an elastic modulus. With this analogy, equations (3.15) impose clamping
conditions at infinity; then, we know that the only solution is the trivial one:

u1(x, y) = 0, v1(x, y) = 0, (4.4)

for all values of x and y. Under the present assumptions, unstable modes are purely
transverse.

Upon linearization, the transverse force balance (3.8b) provides an equation for the
deflection H1 which is decoupled from in-plane flow:

h0 [2(2α+ β)H1,xx + 2(α+ 2β)H1,yy] =
1

3
h3

0 (H1,xxxxt + 2H1,xxyyt +H1,y4t) · · ·

− γ+ + γ−
µ

(H1,xx +H1,yy) +
ρ2 g

µ
H1. (4.5)

Here, we have replaced in the expressions (3.13) for the unperturbed membrane stress,
and have linearized the non-linear terms using equalities such as (NxxH,xx)1 = N0

xxH1,xx

since H0,xx = 0.
The coefficients in linear equation (4.5) are independent both of time and space, and

we seek a solution of the form

H1(x, y, t) = Ĥ1 e
Cu t+ik·x, (4.6)

where Ĥ1 is a complex amplitude, Cu is the growth rate to be determined later, k =
(kx, ky) is the spatial wavenumber, and x = (x, y) the in-plane coordinate. We seek the
wavevector in cylindrical coordinates,

kx = k cos θ, ky = k sin θ, (4.7)

where θ = 0 corresponds to k aligned with the x axis, i. e. with the smallest eigenvalue
α of the shear rate tensor D.

Substituting the trial form (4.6) into equation (4.5), we find an expression for the
growth rate

Cu(k, θ) =
6

(h0 k)2

[
−α (1 + cos2 θ)− β (1 + sin2 θ)− 1

(h0 k)2

(
(γ+ + γ−)h0 k

2 + ρ2 g h0

2µ

)]
(4.8)
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Figure 4. Dimensionless growth rate (τ Cu) for the undulatory perturbation, plotted from
equation (4.9) as a function of the dimensionless wavenumber (h0 k). The most unstable direction
θ = 0 is considered.

A positive growth rate corresponds to an instability. For a given base flow, the wavevector
corresponding to the most unstable mode is found by maximizing Cu(k, θ) with respect
to k and θ. By a convention expressed by equation (3.9), we have α < β; as a result, the
maximum of Cu with respect to θ is always reached for θ = 0. Then, the wavenumber k
is aligned with the x axis, and the instability pattern is made of stripes perpendicular
to the x axis, see the inset in figure 5. This orientation of the pattern is characteristic of
a buckling phenomenon as the x axis is the direction of most vigorous contraction — in
the sense that −α > −β by equation (3.9).

Setting θ = 0 in the equation above yields

τ Cu(k, θ = 0) =
6

(h0 k)2

[
p− 1

2 (h0 k)2

]
, (4.9)

where we have introduced the characteristic times obtained by balancing viscous effects
and gravity, τ , and viscous effects and surface tension, τ2, the Bond number, C, and the
control parameter, p; those parameters are defined by

τ =
µ

ρ2 g h0
, τ2 =

h0 µ

γ+ + γ−
, C =

τ2
τ
, p = −τ (2α+ β)− 1

2 C
. (4.10)

They are all fixed once the base state is prescribed.

Typical plots of the growth rate Cu(k, 0) given by equation (4.9) as a function of
wavelength k are shown in figure 4. For p < 0, Cu is negative for any value of k and
the planar base state is linearly stable. For p > 0 however, there is a range of unstable
wavelengths; the maximal value of the growth rate Cmax

u and the associated wavelength
kmax satisfy the following relations:

τ Cmax
u = 3 p2, h0 kmax =

1

p
1
2

(p > 0), (4.11)
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that is, in physical units:

Cmax
u =

3µ

ρ2 g h0

[
−(2α+ β)− γ+ + γ−

2h0 µ

]2

, kmax =

(
ρ2 g
h0 µ

) 1
2

[
−(2α+ β)− γ++γ−

2h0 µ

] 1
2

.

(4.12)
These expressions apply to the case p > 0, that is when the argument of the square
bracket is positive.

A stability diagram is plotted in figure 5 as a function of the flow properties. The curve
corresponding to the loss of stability is given by the equation p = 0 for α < β, and is
thus a straight line in the upper-left part of the diagram. We complement the other half
of the diagram, α > β, by symmetry: in this region, the parameters α and β have to
be swapped in the previous analysis to comply with equation (3.9). The angular point
in the boundary correspond to a change of orientation of the most unstable vector k
by an angle π/2 when the principal values of the strain rate α and β cross each other.
Note that the planar state is always stable when hen the flow is extensional along both
its principal directions (α > 0 and β > 0, implying p < 0). In the unstable regions, a
buckling instability is driven by compressive membrane stress (when the flow is such that
α < 0 and/or β < 0), and resisted by buoyancy and surface tension: from equation (4.8),
buoyancy is stabilizing at large values of the wavelength 2π/k, while surface tension
stabilizes relatively smaller wavelengths. As a result, the instability threshold depends
on surface tension and buoyancy.

The thin sheet approximation used here assumes that the wavelength is large com-
pared to the thickness, h0 k � 1. By equation (4.11), this requires that the parameter p
is significantly larger than unity too. A limit case is when gravity vanishes, or when the
compressive strain is high; the wavelength becomes large, and can even become compara-
ble to the the lateral size of the system; the growth rate becomes large as well. This case
corresponds to the observations of Taylor (1968) on compressed viscous threads, where
the observed wavelength is comparable to the size of the object undergoing compression.

We also recover the results of the linear stability of Benjamin & Mullin (1988), who
used the equations for volumetric viscous fluids (3D) to interpret Taylor’s experiment on
the wrinkling of a sheared, floating annulus (Taylor 1968). The thin sheet model used
here makes the analysis considerably simpler, as there is no need to solve for the trans-
verse dependence of the various quantities. We checked that the matrix in equation (28)
obtained by Benjamin & Mullin (1988) assuming pure shear, yields our dispersion rela-
tion when expanded in the thin sheet limit (h0 k � 1) in the special case β = −α (pure
shear).

In addition to providing a set of equations that can be readily applied to a variety of
geometries, our framework can be used to address the non-linear dynamics of thin sheets,
as shown in the following section.

4.2. Non-linear stability analysis

The linear stability analysis of the previous section predicts an exponential increase of
the amplitude when the flow is unstable. For large amplitudes, linearization breaks down
and a non-linear analysis is required. The wavevector of the most unstable mode is along
the x axis, which is by our orientation of axes the direction achieving the most vigorous
contraction, see equation (3.9). We perform a non-linear study of the most unstable
mode, assuming that the invariance of the linear mode along the y direction carries on
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Figure 5. Stability with respect to buckling as a function of the principal values of strain
rate (α, β), rescaled using the parameter τ2 = τ C. The buckling condition p > 0 defined in
equation (4.11) has been rewritten 2 (τ2 α)+(τ2 β) > −1/2 using equation (4.10). This equation
holds with the convention of axes defined in the main text, for which α < β. The diagram has
been extended below the dashed diagonal by mirror symmetry.

to the non-linear regime:

H,y(x, y, t) = 0, Nij,y(x, y, t) = 0, u,y(x, y, t) = 0, v,y(x, y, t) = 0, (4.13)

where the in-plane indices i and j for Nij can take on the values x or y. We seek the
solutions H in the form (for the method, see e.g. Manneville 2004; Charru 2007)

H(x, t) = H0(t) +
1

2

(
A(t) eikmax x +A∗(t) e−ikmax x

)
, (4.14)

where A(t) is the complex amplitude of the pattern.
Before starting the calculation, we need to modify the asymptotic condition (3.15)

for the in-plane velocity. Requiring convergence of velocity (u, v) to the reference flow
(αx, β y) is appropriate at linear order, but not at second order. If imposed at second
order, it has the unwanted effect to suppress the instability: by equation (4.21), growth
of the cylindrical pattern is accompanied by a second-order in-plane velocity which is
small and oscillatory, and does not converge to zero asymptotically for (x, y) → ∞. To
work around this, we require the following condition to hold at any time t:

〈u,x〉x(y) = α for all y, 〈v,y〉y(x) = β for all x. (4.15)
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Here, 〈f〉x(y0) denotes the average of a function f(x, y) over the line with equation
y = y0, and its average 〈f〉x(x0) over the line with equation x = x0. Since equation (4.15)
involves the averages of derivatives over an infinite domain, it is equivalent to the mild
assumption that the difference between u(x, y) and αx, and between v(x, y) and β y,
remains bounded. The aim of equation (4.15) is to prevent any systematic deviation
from the reference solution u = αx and v = β y, and in this sense is in line with the
former asymptotic condition (3.15).

Let us observe that the constitutive relations (3.7) for Nxx and Nyy can be solved for
u,x and v,y: with m = 1 and H,y = 0, this yields

u,x(x, y, t) =
2Nxx(x, y, t)−Nyy(x, y, t)

6µh
−H,xt(x, y, t)H,x(x, y, t) (4.16a)

v,y(x, y, t) =
−Nxx(x, y, t) + 2Nyy(x, y, t)

6µh
(4.16b)

By the invariance condition (4.13), all terms in the right-hand side of equation (4.16b) are
actually independent of y, and so is v,y too, v,y(x, y) = v,y(x). This implies that averaging
over y has no effect on v,y: 〈v,y〉y(x) = v,y(x). Combining with equation (4.15), we have

v,y(x, y, t) = β, (4.17)

for any x, y and t: this component of the in-plane velocity remains unperturbed at all
orders.

Substituting this expression into the constitutive equation (3.7) for Nxx, we have (m =
1):

Nxx(x, y, t) = 2µh (2u,x + β + 2H,xtH,x) . (4.18)

By the invariance (4.13), all terms in this equation are actually independent of y. Aver-
aging over x, we obtain

〈Nxx〉x(t) = 2µh (2α+ β + 2 〈H,xtH,x〉x(t)) , (4.19a)

after simplification of 〈u,x〉x using equation (4.15). Calculation of the average in the
right-hand side is straightforward from equation (4.14):

〈H,xtH,x〉x(t) = +
k2

max

2
|A(t)| d|A(t)|

dt
. (4.19b)

Using the invariance (4.13), the in-plane equilibrium condition (3.6a) boils down for
m = 1 to Nxx,x(x, y, t) = 0: Nxx is independent of x, and we have

Nxx(x, y, t) = 〈Nxx〉x(y, t) (4.19c)

Combining the three above equations (4.19a–4.19c), we find the value of the stress
Nxx:

Nxx(x, y, t) = 2µh

(
(2α+ β) + k2

max |A(t)| d|A(t)|
dt

)
, (4.20)

a quantity which appears to be uniform in space. The last term in the parenthesis pro-
vides a non-linear correction to the unperturbed membrane stress N0

xx given in equa-
tion (3.13a).

The in-plane velocity u can be reconstructed from equation (4.18) by combining equa-
tions (4.14) and (4.20):

u,x = α+
k2

max

2

(
AȦ∗ e2 i kmax x + ȦA∗ e−2 i kmax x

2

)
. (4.21)
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Figure 6. Time evolution of the amplitude of the undulatory mode predicted by the
non-linear analysis (4.24): dimensionless amplitude as a function of dimensionless time.

As announced this expression contains a constant part equal to the imposed average
value, α, plus a second-order oscillatory part.

After dropping all terms involving some derivative along y, the transverse force bal-
ance (4.5) reads

µh3

3
H,xxxxt − (γ+ + γ−)H,xx + ρ2 g H = NxxH,xx. (4.22)

We now substitute into this equation the expressions (4.14) for H and (4.20) for Nxx.
This yields a differential equation for the evolution of the amplitude,

µh3

3
k4

max

1

A

d|A(t)|
dt

+(γ++γ−) k2
max+ρ2 g = 2µh

(
(2α+ β) + k2

max |A(t)| d|A(t)|
dt

)
(−k2

max).

Using the dimensionless parameters introduced in equation (4.10), this differential equa-
tion can be rewritten as:

(h kmax)4

6
τ

1

A

d|A(t)|
dt

= (h kmax)2 p− 1

2
− τ (h kmax)4

h2
|A(t)| d|A(t)|

dt

This expression can be simplified using the definitions of Cmax
u and kmax in equation (4.11):

d|A(t)|
dt

= Cmax
u A(t)− 6

h2
|A(t)| d|A(t)|

dt
A(t). (4.23)

The exponential growth rate predicted by linear theory, A,t = Cmax
u A, is recovered when

the non-linear term is omitted.
The complex argument of any solution A(t) of equation (4.23) being conserved during

time, A(t) can be assumed to be real positive without loss of generality. The general
solution of this equation is given by the following implicit equation:

ln
A(t)

h
+ 3

A2(t)

h2
= Cmax

u (t− t0) (4.24)

where t0 is a constant of integration. This solution A(t) is plotted in Figure 6.
Equation (4.24) describes the transition from exponential growthA(t) = A0 exp(Cmax

u t)
at short times, to square root growth A(t) = h (Cmax

u t/3)1/2 at long times. The transition
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occurs when the amplitude reaches a value comparable to the thickness, A/h ≈ 1, corre-
sponding to t− t0 ∼ 1/Cmax

u . Note that the wavelength of the pattern, 2π/kmax ∼ h p1/2,
is much larger than the deflection h at the cross-over between the two regimes: using the
small slope approximation is consistent in the limit |p| � 1 which we consider here; it
remains valid until time t becomes comparable to the large time p

Cmax
u

, which is when the

amplitude of the pattern would become comparable to wavelength.

The square-root growth of the amplitude can be explained by the kinematics of inex-
tensional wrinkling: the parenthesis in the right-hand side of equation (4.20) is the strain

rate Dxx. For inextensional wrinkling, settings Dxx = 0 yields the scaling A ∼ t
1
2 . This

square-root behavior is also compatible with the non-linear analysis of a thin viscous
thread by Buckmaster et al. (1975).

We considered the pattern whose wavelength is fixed by the criterion of maximal growth
rate in the framework of a linear stability analysis. A non-linear analysis revealed that
the exponential growth at short times predicted by linear theory is limited by non-linear
effects: when the deflection becomes comparable to thickness of the sheet, the amplitude
grows more slowly, like the square-root of time.

5. Large forces, long time: coupled perturbation

We study the stability of the planar solution given in Section 3.2, and consider the
Trouton case, that is large transverse forces and long time. We carry out as earlier a local
stability analysis, and consider the in-plane velocity field (u0, v0) given by equation (3.10),
which depends linearly on the coordinates x and y. In Trouton model, we can no longer
ignore the evolution of thickness with time due to the 2D divergence of the base flow:
the solution of equation (3.11) is

h0(t) = h0(0) e−(α+β) t. (5.1)

Because of the explicit time dependence of the base solution (5.1), the simple expo-
nential dependence assumed earlier in equation (4.6) is no longer applicable. We consider
the more general form:

H1(x, y, t) = Ĥ1 e
Σ(t)+ik(t)·x (5.2a)

h1(x, y, t) = ĥ1 e
Σ(t)+ik(t)·x (5.2b)

u1(x, y, t) = i û1 e
Σ(t)+ik(t)·x (5.2c)

v1(x, y, t) = i v̂1 e
Σ(t)+ik(t)·x (5.2d)

for the perturbed quantities H1, h1, u1 and v1 introduced in equation (3.14). The first
term in the exponential is the integrated growth rate:

Σ(t) =

∫ t

0

Cc(t̃) dt̃. (5.2e)

We anticipate that the equation governing Cc(t) is simpler than that for Σ(t), and shall
eliminate Σ in favor of Cc whenever possible. Note that we have also kept an explicit
dependence of the wavevector k(t) on time, for a reason that will soon be clear.

We can factor out the complex exponentials in equation (5.2) and introduce the fol-
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lowing representation of the derivative operators:

∂t = Cc(t) + ik′(t) · x (5.3a)

∂x = i kx(t) (5.3b)

∂y = i ky(t). (5.3c)

Mass conservation (3.5) yields, at first order

(Cc+ik′(t)·x) ĥ1+(α+β) ĥ1−h0 (kx(t) û1+ky(t) v̂1)+i (u0(x) kx(t)+v0(y) ky(t)) ĥ1 = 0.
(5.4)

Here we would have expected an algebraic equation for the amplitudes ĥ1, û1 and v̂1, but
find an additional dependence on the coordinates x = (x, y) through the terms k′(t) · x,
u0(x) = αx and v0(y) = β y. For this equation to be satisfied for any value of (x, y),
we first require that the coefficients of x and y vanish. This yields k′x(t) + αkx = 0 and
k′y(t) + β ky = 0 which writes, in intrinsic variables,

∂k(t)

∂t
= −D(t) · k(t). (5.5)

Equation (5.5) specifies the dilation and rotation of the wavenumber k(t) by the flow,
and generalizes the 1D derivation of Smith (1975). A similar equation has been used in
combustion theory: in their equation (40), Zel’dovich et al. (1980) capture the effect of
a velocity gradient on the growth rate of a harmonic perturbation advected along an
expanding flame surface, which they call the stretch-effect. We note that equation (5.5)
can be interpreted as the conservation of the phase of the unstable mode by the co-moving
derivative: (

∂

∂t
+ u0

∂

∂x
+ v0

∂

∂y

)
(k(t) · x) = 0.

In this form, the equation appears to be related to the condition of advection of the phase
of a WKB expansion in the analysis of short scale perturbations in fluid mechanics, see
for instance equation (7) of Lifschitz & Hameiri (1991).

When the advection condition (5.5) for the wavenumber is taken into account, the
mass conservation (5.4) simplifies to:

[Cc + α+ β] ĥ1 + [−h0(t) kx(t)] û1 + [−h0(t) ky(t)] v̂1 = 0 (5.6)

By the linearized balance of transverse force (3.8a), we have:[
ρ1 g −

ρ2 g

2
+ k2(t)

γ+ − γ−
2

]
ĥ1 +

[
k2(t) (γ+ + γ−) + ρ2 g

]
Ĥ1 = 0 (5.7)

At linear order, the in-plane force balance (3.6) yields:

i kx N̂
1
xx + i ky N̂

1
xy = ρ1 g h0(t) (i kx(t))

(
Ĥ1 −

ĥ1

2

)
(5.8a)

i kx N̂
1
xy + i ky N̂

1
yy = ρ1 g h0(t) (i ky(t))

(
Ĥ1 −

ĥ1

2

)
, (5.8b)

after simplifying the right-hand sides using the buoyancy condition (3.12). The linearized
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membrane stress N̂1
ij is given by the constitutive relations (3.7)

N̂1
xx = h0

(
−2µ (2 û1 kx + v̂1 ky)− (γ+ − γ−)

2
k2 Ĥ1 −

(γ+ + γ−)

4
k2 ĥ1 −

ρ2g

2

(
−Ĥ1 +

ĥ1

2

))

· · ·+
(

2µ (2α+ β)− ρ1 g h0

2

)
ĥ1 (5.9a)

N̂1
xy = −µh0 (û1 ky + v̂1 kx) (5.9b)

N̂1
yy = h0

(
−2µ (û1 kx + 2 v̂1 ky)− (γ+ − γ−)

2
k2 Ĥ1 −

(γ+ + γ−)

4
k2 ĥ1 −

ρ2g

2

(
−Ĥ1 +

ĥ1

2

))

· · ·+
(

2µ (α+ 2β)− ρ1 g h0

2

)
ĥ1 (5.9c)

With the aim to formulate the stability problem in dimensionless form, we recall the
characteristic times τ and τ2 from equation (4.10), and introduce two new parameters τ3
and τ4:

τ =
µ

ρ2 g h
τ2 =

hµ

γ+ + γ−
τ3 =

µ

(2ρ1 − ρ2) g h
τ4 =

hµ

γ+ − γ−
. (5.10)

In complement to C = τ2/τ and p, we introduce another Bond number C2 = τ4/τ3, and
the control parameter R:

C =
h2 ρ2 g

γ+ + γ−
C2 =

h2 (2ρ1 − ρ2) g

γ+ − γ−
R(θ) = −α sin2 θ + β cos2 θ

2
. (5.11)

The set of equations (5.6–5.9) write, after elimination of the membrane stress N̂ij :

M ·


ĥ1

Ĥ1

û1

v̂1

 =


0
0
0
0

 , (5.12)

M being defined by

M =



Cc + α+ β 0 −c k h0 −s k h0

A1 2A2 0 0(
2(2α+ β)− 1

4
A2

)
c − c

2
A1 −h0k(3c2 + 1) −3h0ksc

(
2(α+ 2β)− 1

4
A2

)
s −s

2
A1 −3h0ksc −h0k(3s2 + 1)


, (5.13)

where A1 =
1

τ3
+
h2

0k
2

τ4
, A2 =

1

τ
+
h2

0k
2

τ2
, s = sin θ and c = cos θ, the angle θ between the

x axis and the wavevector k(t) being defined in equation (4.7).

The existence of a solution to the linearized equations (5.12) requires the determinant
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of M to vanish. This condition yields an equation for the growth rate Cc(k, θ)

τ Cc(k, θ) = τ R(θ) +
1

16


(
τ

τ3

)2

(
1 +

(h k)2

C2

)2

1 +
(h k)2

C

−
(

1 +
(h k)2

C

) . (5.14)

The case of pure shear flow (α = −β) has been studied by Benjamin & Mullin (1988); for
this type of flow, the above value of the growth factor Cc can be recovered from matrix
defined in their equation (28) in the thin sheet limit (h k � 1). The set of equations
presented here are valid for an arbitrary base flow.

The growth factor Cc is of variable sign depending on the value of the parameters.
The first term in the right-hand side, proportional to R(θ), describes the effect of the in-
plane flow, and is destabilizing for contractile flows. The first term in the square bracket
is destabilizing and originates in the coupling between the two faces of the sheet. The
second term (−1) in the square bracket describes the stabilization of all wavelengths by
gravity, while the last term in the square bracket, proportional to (hk)2/C, accounts for
the stabilization by surface tension, which is effective for short wavelengths.

With our convention α < β, the growth factor Cc is maximum when the wavevector k
is aligned with the y axis, that is θ = π

2 . Indeed, this makes the only term depending on
θ, namely τ R(θ), maximum by equation (5.11). In the absence of external forces, i. e. for
a free-standing sheet, the square bracket cancels and the planar flow becomes unstable
as soon as there exists a contractile direction in the base flow (α < 0, R(π/2) > 0).

In figures 7 and 8, we have restored the external forces, but consider the particular
case γ+ = γ− and ρ2 = ρ1, for which:

τ

τ3
= 1,

1

C2
= 0. (5.15)

In that case, equation (5.14) yields τ Cc(k, θ) = τ R(θ) + (k̆−1 − k̆)/16 with k̆ = 1 +

(h k)2/C ≥ 1. The maximum with respect to the wavenumber is reached k̆ = 1, that is
k = 0; the maximum with respect to the direction is reached for θ = π

2 . The stability is
therefore determined by the sign of

τ Cc

(
k = 0, θ =

π

2

)
= τ R

(π
2

)
= −α τ

2
. (5.16)

This yields the stability diagram above the dashed diagonal in figure 7. As earlier, the
plot is extended below the diagonal by symmetry.

Figure 8 shows typical plots of the function Cc(k, π2 ) for various values on the param-
eters. Again we study the case defined by (5.15). Since the growth rate is plotted for
θ = π/2, it does not depend on the second flow parameter β, as long as β > α. Varying
the other flow parameter α can drive the system from stable to unstable state. The ef-
fect of the relative weight of gravity and surface tension is also illustrated in the figure.
Unlike the buckling instability of section 4, this instability produces wrinkles oriented
along, and not perpendicular to, the direction achieving largest contraction — which is
the x direction with our choice of axes.

The sign of the second derivative of Cc(k, π2 ) at k = 0 is given by the sign of [(γ+ −
γ−) (ρ1 − 2ρ2)]. When [(γ+ − γ−) (ρ1 − 2ρ2)] < 0, the function Cc(k, π2 ) has a maximum
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Figure 7. Stability with respect to coupled perturbations involving both thickness modula-
tion and deflection of the mid-surface, as determined by the sign of Cc

(
k = 0, θ = π

2

)
in equa-

tion (5.16): phase diagram in the plane of the principal values of strain rate (α, β) rescaled using
the time scale τ imposed by gravity and viscosity and defined in (5.10). Equation (5.16) holds
above the diagonal (α < β), the lower part of the diagram being obtained by symmetry.

at k = 0 and the value of growth factor there determines the stability of the flow:

Cmax
c = Cc

(
0,
π

2

)
= −1

2

(
α+

1

8τ

)
+

τ

16τ2
3

. (5.17)

When [(γ+−γ−) (ρ1−2ρ2)] < 0 and Cmax
c > 0, there is a range of unstable wavelengths.

Large wavelengths are the most unstable (k = 0) and as result the instability depends
on the details of the boundary conditions at large scale and on the size of the system.
This goes beyond the scope of the present analysis, which focuses on local buckling; still,
the analysis of these global modes can be performed using the same set of dimensionally
reduced equations, taking the appropriate boundary conditions into account.
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Figure 8. Dimensionless growth rate τ Cc for the coupled perturbation, obtained by combining
equations (5.14) and (5.15), as a function of the dimensionless wavenumber h k. Here, τ is a
gravity-viscosity timescale, h is the thickness of the sheet, C is the Bond number defined in (5.10)
and α is the most negative (contractile) principal strain rate. The value θ = π/2 corresponds to
the orientation of the most unstable mode. Note that for this particular value of θ, Cc does not
depend on the flow parameter β.

6. Discussion

6.1. A simplified hybrid model for reconciling the BNT and Trouton buckling analyses

In Section 4, an undulatory mode of instability has been found to occur using the BNT
model. This model is relevant to short times, much shorter than the characteristic time
1/|α| ∼ 1/|β| of the base flow. This buckling mode is made up of stripes perpendicular to
the most contractile direction (θ = 0). In the limit of a free-standing viscous sheet, i. e.
when capillary and buoyancy forces become negligible, this instability occurs whenever
(2α + β) < 0, as revealed by setting C = 0 in equation (4.10). By equation (3.13a),
this corresponds to existence of a compressive membrane stress N0

xx along this most
contractile direction x. Then the most unstable mode has infinite wavelength. All these
features are characteristic of a buckling instability.

In Section 5, the Trouton model was used. It is based on different scaling assumptions,
and in particular is valid for much long times, comparable to 1/|α| ∼ 1/|β|. We found
a different buckling mode, coupling thickness variations and undulations of the center-
surface, and with stripes now parallel to the most contractile direction (θ = π/2).

This raises the question of whether these two modes can be in competition, or are
a manifestation of a similar phenomenon viewed in two different limits. To answer this
question, we propose a hybrid model that reconciles both analyses. This model is formal
and simplified, and makes no claims for detailed accuracy. Its only goal is to provide
a unified description of the two buckling modes. It is similar to the hybrid model of
Section 2.5, with the additional approximation that perturbations to the in-plane flow
are neglected. Assuming u1(x, y, t) = 0 and v1(x, y, t) = 0 for any value of (x, y, t) is
consistent with the solution for the undulatory mode and changes quantitatively, but not
qualitatively, the behavior of the coupled mode.

Formally, the conservation of mass (3.11) at linear order yields h1,t + (α + β)h1 = 0.
We introduce a growth rate C = ∂t which is yet unknown, and rewrite this in the hybrid
model as:

(C + α+ β) ĥ1 = 0. (6.1)

We shall soon show that this equation is consistent with the two forms of the conserva-
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tion of mass written earlier in the BNT and Trouton buckling analysis, when the two
corresponding limits are considered.

We now consider out-of-plane equilibrium. Noting that Trouton form (3.8b) of this
equilibrium is a degenerate version of its BNT form (3.8a), we use the latter in the
hybrid model. We linearize equation (3.8a) with respect to the perturbation (h1, H1).
Symbolically, this yields

−N0 k
2 Ĥ1 = µh0

3 C k4 Ĥ1 + (2A2 Ĥ1 +A1 ĥ1). (6.2)

Here, the coefficient N0 represents the pre-stress in the base flow, given in equation (3.13),
which provides the driving force for the buckling instability. The first term in the right-
hand side of equation (6.2) is the bending term. The last term represents the coupling

of undulations (Ĥ1) and thickness variations (ĥ1) through buoyancy and surface tension;
this coupling is described by the coefficients A1 and A2, which have been worked out in
the Trouton analysis, see below equation (5.13). Their expressions are similar in the BNT
case but we do not need to spell them out here. We shall soon check that the pre-stress
and bending terms in equation (6.2) are negligible if the Trouton scaling assumptions are
used, as expected.

Equations (6.1) and (6.2) can be combined in matrix form

M ·
(

ĥ1

Ĥ1

)
= 0, where M =

(
C + α+ β 0

A1

(
2A2 +N0 k

2 + C µh0
3 k4

) )
. (6.3)

The growth rate is found by requiring that the determinant det M = M11M22 vanishes.
One root corresponds to the vanishing of M11, and describes a coupled mode:

C = C ′c, where C ′c = −(α+ β), A1 ĥ
c
1 + (2A2 + · · · ) Ĥc

1 = 0 (6.4a)

and the other one to the vanishing of M22, an undulatory mode:

C = C ′u, where C ′u =
1

(h0 k)2

(
− N0

µh0
− 1

(h0 k)2

2A2 h0

µ

)
, ĥ1u = 0. (6.4b)

The hybrid model features both a coupled mode and an undulatory mode, and brings
the BNT and Trouton analyses under a common framework. Note the close similarity of
the expression for M in equation (6.3) above, with the upper-left block of the matrix M
given earlier in equation (5.13) in the Trouton analysis — the detailed expressions of Cc

and C ′c are different as the hybrid model ignores the perturbation to the in-plane flow.
Note also that, formally, the expression (6.4b) for the growth rate C ′u of the undulatory
mode in the approximate hybrid model, and the expression Cu coming from the BNT
analysis (4.8) are identical.

From the hybrid model, the Trouton and BNT limits can be recovered by analyzing
the orders of magnitude of the growth rates C ′u and C ′c given above. Let us first introduce
the typical time Tf associated with the base flow:

Tf ∼ α−1 ∼ β−1 ∼ L

U
.

We use the notations of Section 2 for the orders of magnitude, namely U for in-plane
velocity, L for the in-plane length, and ε for the aspect ratio h/L. The two growth rates
appear to be vastly different:

C ′u ∼
N0

µh0
3 k2

∼
µh0

U
L

µh0
3 1
L2

∼ 1

ε2 Tf
, C ′c ∼ α ∼ β ∼

1

Tf
.
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The typical growth time of the undulatory mode is 1/C ′u ∼ ε2 Tf is precisely the short
time scale of the BNT model (m = 1) introduced earlier in equation (2.20a). The typical
growth time of the coupled mode is 1/C ′c ∼ Tf , which is the time scale of the Trouton
model (m = 0) in equation (2.20a). Stated differently, the coupled perturbation has
a vanishing small growth time C ′c = −(α + β) ≈ 0 in the BNT framework, meaning
that the corresponding mode does not grow significantly over the short time scale ε2 Tf ;
symmetrically, the undulatory mode is missed in the Trouton analysis as its growth is
limited by weak bending stress only: this undulatory mode grows much faster than what
the Trouton model can see — when it is actually unstable.

The hybrid model reveals that the two possible unstable modes are actually in compe-
tition in a given physical system, even though they were first revealed using two different
mathematical models.

If the system is stable with respect to the undulatory mode, the sheet remains flat over
the long time scale Tf . Then, Trouton analysis of buckling applies, and can be used to
tell whether a coupled mode develop at long times. Conversely, if the system is unstable
with respect to the undulatory mode, the latter grows very rapidly. In this case, the
undulatory mode enters into the non-linear regime after a short delay ∼ 1/Cu ∼ ε2 Tf

according to the non-linear analysis of Section 4.2. This is much too early for any coupled
perturbation predicted by the analysis of Section 5 to become significant. As a result,
the coupled mode may develop with a long delay on top of the undulatory mode, but
the analysis presented here is inapplicable as the base state is not planar. We note that
the evolution of the two overlapping pattern at long time can not be fully described in
an asymptotic study anyway, as can be seen for instance in Smith (1975).

6.2. Range of validity of the stability analyses

We now discuss the range of validity of the stability analyses of Section 4 and 5. For
simplicity, we restrict ourselves to the case of vanishing surface tension.

For the coupled mode, the characteristic growth time is Tf , which is also the time scale
of the Trouton model. The Jeffreys number takes the form Jec = (ρ g LTf)/µ, where the
wavelength L is generally set by the size of the system. Our assumptions require Jec � 1,
which can be achieved, for instance, if the size L of the system is large enough.

For the undulatory (buckling) mode, the characteristic time for growth is (z∗/L)2 Tf ,
consistent with the choice of the BNT scaling. It grows at a much faster rate than the
coupled mode, as the aspect ratio (z∗/L) is small. Using the scaling [(ρ g Tf)/(z

∗µ)]1/2

found for the wavelength of the most unstable mode in equation (4.12), Jeffreys number
reads Jeu = [(ρ g hTf)/µ]1/2. Our assumptions require Jeu � 1, which can be achieved
if, for instance, the thickness is small enough.

The validity of our analyses for the buckling and coupled instabilities require Jec � 1
and Jeu � 1, respectively. We note that these conditions are not mutually exclusive. Both
can be met if h � µ

ρg Tf
� L. In such circumstances, both instabilities can be observed

concurrently, keeping in mind the limitations mentioned at the end of Section 6.1.

6.3. Orders of magnitude

We compute here some orders of magnitude for the two modes in the cases of compres-
sional tectonics of the Earth’s crust and plate glass production. In the two applications,
the bath is much less viscous than the two sheets. For the earth crust floating on the up-
per mantle we use the following values: h = 10 km, L = 1000 km, µ = 1023 kg.m−1.s−1,
α = −10−14 s−1, ρ1 = 2800 kg.m−3, ρ2 = 3400 kg.m−3 and γ+ = γ− = 0 N.m−1.
These values are only indicative: the rheology of geophysical fluids is non-Newtonian,
while the geometry and the loading are complex. For a glass sheet floating on molten
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tin, we use the following parameters: h = 3 mm, µ = 105 kg.m−1.s−1, α = −0.03 s−1,
ρ1 = 2500 kg.m−3, ρ2 = 6500 kg.m−3 and γ+ +γ− = 1 N.m−1. Note that the viscosity of
glass is highly dependent on temperature, which may impact on the orders of magnitude
obtained below. This yields the following orders of magnitude for the Jeffreys number:

Jec ≈ 30, Jeu ≈ 5 · 10−1 (earth crust), Jec ≈ 102, Jeu ≈ 10−1 (molten glass).
(6.5)

The values of the Jeffreys number are not always asymptotic and the corresponding
predictions are only qualitative. For the undulatory (buckling) mode, the typical growth
time τ = 1/Cmax

c and wavelength λ = 1/kmax are given by equation (4.12). In the earth
application, this yields a wavelength of about 150 km and a typical time of 100 000 years.
Our non-linear analysis predicts an amplitude of deformation of about h = 10 km in
the same typical time. The lengthscales are satisfying while the time scale is an order
of magnitude too small. This might be ascribed to the various simplifications of the
problem. In the glass application, we obtain a wavelength of several centimeters λ ≈ 10 cm
and a typical time τ ≈ 10−1 s. The non-linear analysis predicts that the amplitude of
deformation reaches the thickness of the glass sheet in this typical time. The wavelength
matches the typical wavelengths of imperfections observed on float glass, and correctly
predicts the orientation of stripes perpendicular to the direction of stretching (buckling
mode). However, we cannot predict the amplitude because the process is intrinsically
nonstationary: the flow is compressive and extensional according to the position along
the bath.

The coupled mode is more unstable for small wavenumbers. As a result, its wavelength
and direction are controlled by the geometry of the system at large scale. We shall only
estimate the typical growth time τ = 1/Cmax

c where Cmax
c from equations (5.17). In the

earth application the typical growth time is 6 million years, which is a sensible geological
time scale. This mode might correspond to the variable thickness of the crust across
mountain ranges. In the glass application, the typical growth time is 102 s which is
comparable to the typical residence time of the glass in the float process, which could
explain the large scale imperfections of the thickness of float glass.

6.4. Conclusion

We have derived a reduced, 2D model for thin viscous sheets subjected to arbitrary
forces applied in the bulk or on the interfaces. The equations are compact, and expressed
in terms of thickness-averaged quantities such as position, velocity, in-plane stress and
bending moments. Such formulations have been extensively used for elastic plates and
shells, but have received much less attention in the context of viscous sheets. Our equa-
tions are valid for weak deflections from a straight configuration, and are well suited to
the analysis of buckling. The models based on the Trouton and BNT scalings were de-
rived in a unified manner. We presented a comprehensive analysis of the buckling of thin
floating sheets for arbitrary base flows. A planar base flow can become unstable when it
induces a large enough contraction along some tangent direction. We identified a buckling
mode with a wavenumber aligned with the direction of most vigorous contraction, and a
coupled mode with a wavenumber perpendicular to it it. In addition, the non-linear evo-
lution of buckling was studied, revealing a cross-over between the short-time, exponential
evolution of the amplitude, as predicted by linear stability, to a large-time, square-root
evolution of the amplitude, as imposed by kinematics. The equations for thin viscous
sheets subjected to external forces derived in this paper provide a framework applicable
to a variety of problems and geometries, and can serve as a basis for an efficient numerical
implementation.
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Appendix A. Identities for slice-based operators

Taking the derivative with respect to x of the definition (2.3a) for the thickness-integral
operator I, we have for a fixed time

[I · (φ,x)](x) =
d[I · φ]

dx
− φ(x, z+(x))

dz+

dx
+ φ(x, z−(x))

dz−
dx

. (A 1)

The two last term come from the fact that the interval of integration, z−(x) ≤ z ≤ z+(x),
has non-constant endpoints. We refer to this formula as ‘integration by parts along the
z direction’.

When the argument of the operator I is an exact derivative with respect to z, we can
carry out the integration explicitly:

[I · (φ,z)](x) = φ(x, z+(x))− φ(x, z−(x)). (A 2)

These identities can be turned into identities for the first-moment operator J by a
special choice of the function φ:

φ(x, z) = (z −H(x)) γ(x, z)

for some function γ(x, z). For that particular choice of φ, the definition (2.3b) of J reads:

[I · φ](x) = [J · γ](x).

Substituting into the first identity (A 1), we have

[I ·(−H,x γ)](x)+[J ·(γ,x)](x) =
d[J · γ]

dx
− h(x)

2
(z+,x(x) γ+(x) + z−,x(x) γ−(x)) , (A 3)

where γ±(x) is a shorthand notation for γ(x, z±(x)).
Substituting into the second identity (A 2), we find

[I · γ](x) + [J · (γ,z)] =
h(x)

2
(γ+(x) + γ−(x)) . (A 4)

Another identity follows from the definitions (2.3d) and (2.3e) of the operators A and
χ:

[χ · φ](x) =
1

2

(
[A · φ](x, z+(x)) + [A · φ](x, z−(x))

)
. (A 5)

A last set of identities allows one to rewrite the composition of the operator A with
either I or J in terms of the first and second moments J or K:

[I · [A · φ]](x) = h(x) [χ · φ](x)− [J · φ](x), (A 6a)

[J · [A · φ]](x) =
h2(x)

8
[I · φ](x)− [K · φ](x). (A 6b)

These identities follow from a permutation of the two integrals associated with the op-
erators in the left-hand sides. The most direct proof is to notice that both sides of each
equality are linear forms of φ, and to check the equalities when φ is a Dirac function,
φ(z) = δD(z− z0), studying the cases z− < z0 < H and H < z0 < z+ separately. Details
of the proof are left to the reader.
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Appendix B. Interpretation of the equations of equilibrium

Here, we propose an interpretation of the equations (2.11) and (2.15) for the equilib-
rium of a thin 2D sheet, by showing equivalence with the Kirchhoff equations for a thin
rod. The equations of equilibrium (2.32) and (2.33b) in a 3D geometry have a similar
structure, and can be interpreted similarly.

In a thin elastic rod, the resultant and moment of internal stress S over a cross-section
are noted n(x) and m(x), and the balance of force and moment over a small length of
the rod is expressed by the classical Kirchhoff equations:

n′(x) + p(x) = 0 (B 1)

m′(x) + t(x)× n(x) + q(x) = 0. (B 2)

With the right-hand sides set to zero, this defines the equations of equilibrium. Here,
p(x) and q(x) are the lineic densities of applied forces and moments, and t(x) is the
tangent to the centerline.

We are concerned with a 2D geometry, restricted to the (x, z) plane: n = (nx, 0, nz),
m = (0,my, 0), p = (px, 0, pz), q = (0, qy, 0) . In addition, we consider the small slope
approximation: t = (1, 0, H,x), the quantity H,x being small, of order ε. Projection of
Kirchhoff equations onto the axes yields:

nx,x + px = 0 (B 3)

nz,x + pz = 0 (B 4)

my,x − nz +H,x nx + qy = 0. (B 5)

Elimination of the normal internal force nz by equation (B 5) and substitution into
equation (B 4) yields:

my,xx + (H,x nx),x + qy,x + pz = 0. (B 6)

We can identify the axial balances of forces (2.11) and (B 3) on one hand, and the
transverse balances of forces (2.15) and (B 6) on the other hand with the following vari-
ables:

nx = Nxx (B 7)

my = Mxx (B 8)

px = [I · f (0)
x ] (B 9)

pz = [I · f (1)
z ] (B 10)

qy = [J · f (0)
x ] (B 11)
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